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Abstract
This paper reports on the behaviour of uniform granular particles of diameter
d undergoing a gravity-free shear flow induced through parallel bumpy
boundaries that move in opposite directions at constant velocity U . Non-
equilibrium, discrete simulations are performed, in which particles are modelled
as inelastic, frictional spheres. The flow is described using steady state profiles
of mean velocity, granular temperature, solids fraction and normal pressure.
A non-uniform local shear rate, characterized by an S-shaped mean velocity
profile, produces an imbalance in the contact distribution of particles in the
vicinity of the walls so that they drift toward the geometric centre of the
flow. A spectral analysis of the transverse velocity provides evidence of
convective cell structures in the secondary velocity field whose wavelength
decreases with the effective shear rate. A typical tracer particle, whose
trajectory has a power spectrum suggestive of persistent fractional Brownian
motion, continually samples the entire shear region. In contrast, a large intruder
φ ≡ D/d > 1, which also migrates away from energetic regions adjacent to the
walls, eventually becomes trapped near the mid-plane of the flow with a speed
that increases with φ and the effective shear rate ε̇ = 2U/H . Fluctuations in
the evolution of its transverse velocity component obey a power law of the form
V rms

y = Cφ−a , which is a consequence of its greater inertia, while fluctuations
in its net force vary directly with φ.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Perhaps one of the most interesting and intriguing features of a granular flow is the phenomenon
of segregation, which can be described as the evolution of a well-mixed bulk solid to a spatially
non-uniform state. Its occurrence during industrial solids processing and handling operations
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poses a severe obstacle to the general requirement of creating and maintaining homogeneous
mixtures. This inability to achieve and maintain a well-mixed condition of a bulk solid
throughout its processing history can lead to serious flaws in the properties of an end product,
leading to unfavourable economic consequences [1]. Because of the inherently complex
nature of segregation, investigations reported in the literature have focused on identifying
controlling mechanisms, such as ‘kinetic sieving’ [2, 3], shear-induced percolation [4, 5],
convection [6–10], local steric effects [11–13], the reverse Brazil nuts effect [14–16] and
condensation versus percolation [17].

Solids handling equipment routinely contains moving components in contact with the
bulk material to cause material transport; thus it is essential to understand how the boundaries
influence the dynamics of the individual particles. A seemingly simple paradigm where
boundary interactions play a prominent role is granular Couette flow, in which the material
undergoes a non-uniform shear generated by parallel walls that move in opposite directions.
Here, flow behaviour is regulated by number of factors, including the ability of the walls to
transmit momentum to the granules, the relative width of the sheared layer, the effective shear
rate and the distribution of particle properties (i.e., surface friction, restitution coefficient,
shape, size and density). For this configuration, numerous investigations on monodisperse
systems have been reported in the literature, with studies designed to explore diffusion, slip
velocity and wall stresses, force chains and basic rheology (see for example [9, 18–38]).
However, investigations on segregation promoted by differences in particle properties in this
geometry have not received as much attention.

The first part of this paper reports on the salient features of a fully developed Couette flow
which are extracted from soft sphere discrete element simulations. In contrast to the quasi-
static regime case (e.g. [18–20, 39–42]), the effective shear rates used in our study generate
energetic, collision-dominated flows that are characterized by calculations of the mean field
profiles of solids fraction, velocity, granular temperature and pressure. In this, we describe the
environment that will be experienced by a single intruder whose properties differ from those of
the bulk media. Our study of this aspect is motivated in part by Jenkins and Yoon’s [43] steady
state kinetic theory-based model for segregation in a thermalized binary mixture under gravity
that gives rise to an analytical expression which, in the absence of a temperature gradient,
predicts whether an intruder will rise or sink depending on its relative mass and size.

The remainder of this paper is organized as follows. In section 2, we provide an overview
of the simulation method, a description of the physical geometry of the Couette model and
the relevant parameters chosen for the case studies. Section 3 presents computations of
certain mean fields that define the flow, while intruder trajectories and their power spectra
are contrasted against a typical tracer particle in the next section. This is followed by a
discussion of diffusivity, net force and velocity, as well as the root mean square values of their
fluctuations as a function of intruder size. Here, we also separate the effects of particle mass
and size to assess which of these factors has the greater impact on its behaviour. Our summary
and conclusions are presented in section 6.

2. Simulation method and physical model

We investigate the behaviour of the intruder via discrete element simulations—a method that
is credited to Cundall [44] in the 1970s, but actually has its origins in the earlier molecular
dynamics computations in the statistical physics community (see for example [45, 46]).
The fundamental concept in the discrete element method is the dissipation experienced by
macroparticles due to collisions as opposed to energy conservation that characterizes molecular
systems. A consequence of the dissipative nature of granular systems is reflected in simulations
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that are inherently nonequilibrium with regard to the ‘granular temperature’—a measure of
fluctuations in particle velocities. Results presented herein represent averages taken in a steady
state condition that is attained in only a few seconds (equivalent to approximately 30 collisions
per particle per second).

In what follows, we provide a brief description of the force models employed in our code.
Complete details can be found in the literature [47–50]. For two colliding spheres, the force
along the line of centres (otherwise referred to as the ‘normal’ direction) consists of loading
and unloading paths that are controlled by linear springs of stiffness K1 and K2, respectively.
Thus, Fload = K1α and Funload = K2(α − α0), where α denotes the normal penetration with
α0 being its value when Funload = 0. This model produces energy dissipation governed by a
constant coefficient of restitution e = √

K1/K2. The force in the tangential plane, which is
patterned after Mindlin’s [51] theory, features a stiffness that decreases with relative tangential
surface displacement until full sliding occurs at the friction limit with coefficient µ. Thus
the model incorporates the slip–stick behaviour that takes places in real systems. These soft
particles are able to handle flows with enduring contacts, as opposed to standard ‘hard’ sphere
models featured in event-driven simulations [52, 53]. The relatively dense systems considered
in our application necessarily admit enduring contacts so that the soft sphere models were seen
to be more appropriate. Once the instantaneous forces on all particles have been computed,
the system is marched forward in time by numerically solving the equations of motion using
a leapfrog algorithm. The integration time step is determined from the approximate duration
of the normal force contact mode τ = πe

√
m/2K1 divided into n steps (typically n = 30–40)

so that �t = τ/n. For the parameters used in this study, �t ∼ 10−6 s.
The computational (Couette) cell consists of a rectangular control volume bounded by

four periodic sidewalls (see figure 12). The system is driven through collisions transmitted to
monodisperse particles (diameter d) by upper and lower, parallel, bumpy walls that move in
opposite directions at a constant velocity U . These walls are composed of regular arrays of half-
spheres (diameter d) arranged in a tight square configuration. The shear gap H is defined as the
distance between the wall bumps, so that the effective shear rate is ε̇ = 2U/H . The flow spheres
and wall bumps are composed of glass having a mass density ρ = 2700 kg m−3, a normal
restitution coefficient e = 0.9 and a coefficient of sliding friction µ = 0.02. Gravitational
acceleration is set to zero since our concern is the influence of the non-uniform shear field on
the behaviour of an intruder. We remark that our initial studies showed that the inclusion of
a very small amount of gravity caused the system to eventually collapse, resulting in a loss of
contact with the upper wall. However, kinetic theory suggests that it is possible to generate a
fluid-like ‘grain-inertia’ flow [2] if ε̇2d/g is sufficiently large.

For the purpose of computing steady state profiles across the shear gap, the cell is
partitioned into uniform layers (or strips) whose height is equal to a particle radius. Thus,
spatial means in each layer are obtained by averaging through the depth of the flow region
(figure 4). Particle fractions are allowed to contribute to mass-weighted layer averages in lieu
of ascribing the entire particle mass to the layer in which its centre resides. A data point
representing the spatial depth-averaged value in the shearing plane is assigned to the middle
of a layer. The profile is obtained by fitting straight lines to these data points [54].

Initially, flow spheres are randomly arranged in the cell so that a chosen average
(bulk) solids fraction (i.e., the fraction of available volume occupied by solids) ν is
obtained. Thereafter, the upper and lower walls move with velocity U in opposite directions.
The system quickly attains a steady state after approximately 3–4 s (equivalent to about
90 collisions/particle) so that the flows are fully developed. Statistics used for time averages
are gathered after a steady state condition has been attained. However, the system is not in
equilibrium in the sense that the temperature profile is not uniform (figure 1(b)).



S2612 J Liu and A D Rosato

T (y)
-1 -0.5 0 0.5 1

Y
 / 

H

H=8d

H=16d

H=32d

(a) (b) 

 

(c) 

H=32d 

H=16d 

Y
/H

 

ν

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Y
 / 

H

0

0.2

0.4

0.6

0.8

1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0.60 0.1 0.2 0.3 0.4 0.5

Figure 1. (a) Steady state velocity, (b) granular temperature and (c) solids fraction profiles across
the shear gap. Lines are included to show trends in the data.

The flow is characterized by computed steady state profiles across the shear gap of the
mean velocity ū(y), granular temperature T (y), normal pressure Pyy and solids fraction ν(y).
The ‘granular temperature’ describes the mass-averaged kinetic energy associated with the
velocity fluctuations, a concept that was proposed by Ogawa [55] as an analogy between
the usual thermodynamic temperature and the fluctuating motion of particles in an energetic,
collision-dominated granular flow. It is given by

T = u′ · u′/3

d2ε̇2
= (u′ · u′ + v′ · v′ + w′ · w′)/3

d2ε̇2
(1)

where u′ = (u′, v′, w′) are the components of the deviatoric velocity along the coordinate
directions and ε̇ ≡ 2U/H is the effective shear rate.
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Figure 2. (a) Profile of the kinetic and potential components of the normal pressure for H/d = 16.
(b) Total normal pressure profile = kinetics + potential.

Granular pressure consists of a kinetic component Pk resulting from fluctuations in particle
velocities, and a potential component Pc due to momentum transfer via collisions. Thus,

P = Pk + P = 1

V

[
N∑

i=1

mi u′
i u

′
i +

1

2

N∑
i> j

ri j Fi j

]
(2)

where ri j is the vector connecting the centres of particles i and j , Fi j is the collision force on
particle i due to j and V is the averaging volume. The pressure is normalized in the usual
manner [50] by the product of the density, square of the particle diameter and square of the
shear rate ε̇, i.e., P̂ ≡ P/ρd2ε̇2.

3. General features: depth profiles of mean fields

An important trait of the flow is that the velocity and granular temperature profiles are not
linear, in contrast to those for a uniform shear condition [50]. A typical steady state (averaged
over 100 s) profile of the x component of the normalized velocity ū(y)/U (figure 1(a)) for the
cases H/d = 8, 16 and 32 demonstrates that the shear rate is not uniform. The temperature
profile (figure 1(b)) has a gradient as it decreases towards the centre of the sheared region,
in agreement with the simulation studies of Lun [34]. The largest velocity fluctuations occur
near the walls due to the low solids fraction (figure 1(c)) in this region (with a correspondingly
higher shear rate), and the presence of the bumps.

The major contributor to the pressure arises from particle collisions rather than velocity
fluctuations. The profile of the dimensionless normal pressure Pyy in figure 2 for H/d = 16
is a mass-weighted spatial average taken over a 100 s time interval. The kinetic contribution,
which is largest near the walls where the solids fraction is a minimum, is significantly smaller
than the potential part due to the relatively high solids fraction (ν = 0.4) used in this study.
The total pressure shown in figure 2(b) is the sum of the kinetic and potential components.
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Figure 3. Secondary-velocity-field map (u′(x, y), v(x, y)) for the case U = 8d/s and H/d = 8,
corresponding to ε̇ = 2/s.

3.1. Secondary velocity field

Let u(x, y), v(xy) denote the steady state, depth-averaged components of the velocity field
in the shearing plane (see figure 4 for a description of the averaging cells). The deviation of
u(x, y) from the mean ū(y) (figure 1(a)) is computed as u′(x, y) ≡ (u(x, y) − ū(y))/U . A
typical mapping (u′(x, y), v(x, y)) for U = 8d/s and ε̇ = 2/s appears in figure 3. A careful
inspection of a sequence of analogous fields produced by varying the effective shear rate ε̇

(for H/d = 8) provided evidence of what appeared to be convection cells spanning the length
of the flow region having a characteristic wavelength that depends on ε̇. We carried out the
following simple analysis of the data to identify these wavelengths. For each ε̇, v(x, t) was
constructed by adding the y component of the velocity v(x, y, t) of particles whose centres
lie in a slab of length �x centred at x at time t (as illustrated in figure 4), and then computing
its mean v(x, t) by dividing by the number of particles in the slab. The steady state discrete
function v(x) is computed from the long time average of v(x, t). The autocorrelation of v(x)

was subjected to a spectral analysis to look for the appearance of a dominant wavelength. As
an example, figure 5 illustrates the development of v(x) for ε̇ = 2/s to its steady state profile
(inset) in a cell having a length L/d = 64. A pronounced peak in its autocorrelation function
appears at λ ∼= 7.5d with a power approximately two orders of magnitude larger than those
for all other wavelengths. By repeating this procedure for other values of ε̇, we obtained a
graph of wavelength versus ε̇, the results of which are given in figure 6. We performed some
limited studies for H/d = 16 and 32 and at ε̇ = 1 and 2/s. A preliminary analysis of the data
suggest a behaviour of the wavelength consistent with that shown in figure 6. At this point,
we are unable to provide a clear interpretation of the growth of the wavelength with reduction
in shear rate that was found. A more complete study of this phenomenon is planned for future
publication.

4. Intruder and tracer particle trajectories

In this section, we discuss the motion of a tracer particle of diameter d and compare it with
that of a larger intruder of diameter D in a system having a mean bulk solids fraction ν = 0.4
and H/d = 16. At t = 0, the intruder particle is positioned adjacent to the lower moving wall.
We measure the time Tc for this particle to cross the geometric centre or mid-plane of the cell
as a function of the ratio φ ≡ D/d for several boundary speeds U = 16, 32, 64 r/s (r is the
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Figure 5. Plot of v(x) as a function of x/d (L/d = 64, ε̇ = 2/s) showing development to the
steady state velocity. This appears in the inset, where the horizontal axis is 2x/d.

flow particle radius), corresponding to shear rates ε̇ = 1, 2 and 4, respectively. The crossing
time data are summarized in figure 7(a); the resulting average intruder velocity (figure 7(b))
increases with both shear rate and size ratio.

A tracer or typical flow particle (φ = 1) will visit the entire accessible2 sheared region
over a time interval that depends on the shear rate. Careful observations of flow animations
at the relatively high solids fraction used revealed particles jumping between layers formed
within the system. A visual inspection of the normalized y-trajectory of a tracer particle in
figure 8(a) suggests that there may be a dominant mode. To determine whether this was the
case, we computed its power spectral density P( f ) = limτ→∞(1/τ)Ŷ ( f )Ŷ ∗( f ), where τ is
the averaging period, Ŷ ( f ) is the fast Fourier transform of the normalized trajectory Y ∗(t)

2 The mass centre of a particle is excluded from a small region near the moving walls due to the presence of the
bumps.
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Figure 7. (a) Crossing time Tc (s) versus φ at U = ±16, 32, 64 r/s; (b) average intruder velocity
Vav = S/Tc, where S is the distance travelled by the mass centre from its initial position near the
wall to the mid-plane of the cell.

and Ŷ ∗( f ) is its complex conjugate. We note that normalized y-coordinate Y ∗ is obtained
by rescaling the shear gap distance to account for excluded regions near the walls. If Ym(φ)

denotes the closest distance possible between the centre of the intruder and the boundary plane,
then Y ∗ ≡ (Y −Ym(φ))/(H −2∗Ym(φ)). Our analysis of the spectrum in figure 8(b) revealed
that P ∝ f −2.4, which is indicative of a persistent fractional Brownian motion and chaotic
dynamics. This conclusion may appear to be somewhat counterintuitive, as one might expect
a flow particle traversing across the shear gap to exhibit some periodicity. While we do not
completely understand the power spectrum result for the tracer particle, we report it here to
promote further discussion. The y-trajectories of intruders of various sizes were analysed in the
same manner, i.e., by examining the behaviour of their power spectra P , the results of which
are summarized in table 1. After a large intruder reaches the central region of the sheared
region (which has a relatively low granular temperature), it is essentially constrained there,
an event which we call ‘trapping’. This pattern occurred regardless of the intruder’s initial
location. The phenomenon is reflected in the distributions of Y ∗ for intruders of various sizes
in figure 9. We remark that the affinity of larger particles for the colder (as per the granular
temperature) regions of the flow was also found in recent DEM studies [56].
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Table 1. Power spectrum of intruder y-trajectories.

φ = D/d η β = −(2η + 1) P ∝ f β

1.0 0.7 −2.4 P ∝ f −2.4

2.0 0.9 −2.8 P ∝ f −2.8

3.0 1.06 −3.0 6 P ∝ f −3.06

Our results demonstrate that the centreline is a global attractor for the dynamics of intruder
particles. We further illustrate this in a binary system in which the large particles occupy 30%
of the total particle volume. Initially (at t = 0), the large spheres are dispersed throughout
the gap region (figures 10(a), 11(a)). However, after only 20 s of flow, the distribution has
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changed so that these particles have migrated towards and remain within a neighbourhood of
the centre plane (figures 10(b), 11(b)).

5. Diffusion, velocity and force calculations

There is a general tendency for particles to migrate away from the boundaries towards the
centre of the flow region because the local shear rate is greater near the walls. Here, the
frequency of collision on the particle’s surface facing the wall is larger than on the opposing
half. This was verified by calculations that are not shown here. While all particles in the flow
experience this imbalance, a large intruder eventually finds that it is unable to return to the
walls once it has moved towards the centre, as demonstrated in the previous section. In this
section, we highlight differences between the behaviour of a typical flow particle (tracer) and
an intruder with regard to diffusivity, velocity and the evolution of the net force acting on each
particle. A bulk solids fraction ν of 0.4 was used for these studies. We note that because flow
particles and the intruder are assigned the same material density ρ, the results to be presented
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reflect the influence of both mass and size. Further on in our discussion, we will examine the
contribution of each separately by considering large intruders of the same mass as the flow
particles.

The mean square displacement of the y component of the trajectory is computed in the
usual manner, i.e.,

〈�y2〉(t) := 1

M(t)

M(t)∑
k=1

[yk − yk−1]2 (3)

where M(t) denotes the number of discrete trajectory points at time t . The diffusivity Dyy is
then found from the limiting slope of the mean square displacement, Dyy = limt→∞ 1

2t 〈�y2〉,
as expected because of the absence of any mean flow in this direction [25]. Effective shear
rates ε̇ = 2, 4 and 8 were used with size ratios φ = 1, 1.5, 2.0 and 3.0. Our results for φ = 1.0
and 2.0 at ε̇ = 4 in figure 12 reveal almost an order of magnitude difference between the
diffusivity (cm2 s−1) of the tracer and an intruder particle. We found this to be the case for
intruders of other sizes as well.

Let Nc(t) denote the total number of contacts experienced by the intruder during an interval
of time interval � that is three orders of magnitude smaller than the timescale over which the
dynamics evolves, but much larger than the integration step. The resultant force (time averaged
over �) acting on this particle perpendicular to the direction of shear is computed as

Fy(t)net = 1

Nc(t)

Nc∑
j=1

F j
y . (4)

Its normalized value is given by F̄y(t) ≡ Fy(t)net

ρ(d2U/H )2 . Time traces of F̄y(t) and V̄y(t) = Vy(t)/U
for a typical flow particle and an intruder (φ = 3) are shown in figure 13. In comparison with
a tracer, the intruder experiences significantly smaller fluctuations in V̄y(t), which is simply a
consequence of its greater inertia. On the other hand, the fact that F̄y(t) of the intruder shows a
more rapid variation with t and a greater magnitude is principally due to its larger coordination
number (i.e., more contacts with the surrounding media).

Steady state, root mean square (rms) values of F̄y(t) and V̄y(t), denoted as F rms
y , V rms

y , are
presented in figure 14 as a function of φ. For 0.5 < φ < 3.0, F rms

y increases linearly with φ
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Figure 13. Evolution of F̄y(t) for (a) φ = 1, (c) φ = 3 and velocity V̄y(t) for (b) φ = 1 and
(d) φ = 3.
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Figure 14. Steady state graphs of F rms
y (a) and V rms

y (b) versus size φ. Correlation coefficients R2

are shown for each fitted curve.

while V rms
y was best fitted to a power law of the form V rms

y = Cφ−a . Note that the reduction
in V rms

y with φ is consistent with its diminished diffusivity Dyy .
The decay of V rms

y with φ is primarily an inertial effect. This becomes clear if the mass
ratio φm ≡ m D/md is varied while keeping φ = 1 so that the intruder diameter is the same
as for a flow particle. Note that when the material density of the intruder is equal to that
of a flow particle, then φm = φ3. Figure 15(a) is a graph of V rms

y against φm with φ = 1,
while figure 15(b) illustrates the case when φ varies with the material density adjusted so that
φm = 1. These results imply that the intruder’s mass has a greater effect on the reduction of
V rms

y than does its size relative to the flow particles.
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y for the intruder when (a) its size is equal to that of the flow

particle (φ = 1) and its mass is varied, and (b) its mass is constant (φm = 1) while its size is varied.

6. Summary and conclusions

We have presented our findings on the behaviour of an intruder within a bed of uniform particles
that are sheared between bumpy, parallel walls moving in opposite directions with constant
velocity U . Discrete element simulations using soft spheres were carried out to model this flow,
which was described by steady state profiles of velocity, solids fraction, granular temperature
and normal pressure. Our computations provide evidence of the presence of convection cells
across the length of the sheared region having wavelengths that depend on the effective shear
rate. As a result of a non-uniform, steady shear rate characterized by an S-shaped velocity
profile, particles in the vicinity of the walls slowly migrate towards the centre in such a way
as to continually sample the entire accessible flow region. A larger or more massive intruder
tends to follow a similar path, but eventually becomes trapped when it reaches the less energetic
centre of the flow. Compared with a tracer, it experiences small velocity fluctuations because
of its greater inertia, and consequently the motion has a smaller diffusive component.
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